Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Add question

Login

Register Now

Your data is secured. So, please complete the form.

Memahami Bentuk Tak Tentu Dan Sejenisnya

\frac{0}{0}= tak tentu karena

tak tentu dikali 0 =0

Bentuk tak tentu lainnya adalah

1. \frac {\infty}{\infty}

Contoh :

\displaystyle \lim_{x \rightarrow c}\frac{f(x)}{g(x)}=

yang mana \displaystyle \lim_{x \rightarrow c}f(x)= \infty dan \displaystyle \lim_{x \rightarrow c}g(x)= \infty

Sudut pandang lain :

\displaystyle \lim_{x \rightarrow c}\frac{f(x)}{g(x)}= \lim_{x \rightarrow c} \frac{1/g(x)}{1/f(x)}=  \frac{1/\infty}{1/\infty}=\frac{0}{0}

2. 0.\infty

\displaystyle \lim_{x \rightarrow c}f(x)g(x)=

yang mana \displaystyle \lim_{x \rightarrow c}f(x)= 0 dan \displaystyle \lim_{x \rightarrow c}g(x)= \infty

Sudut pandang lain :

\displaystyle \lim_{x \rightarrow c}f(x)g(x)=\lim_{x \rightarrow c} \frac{f(x)}{1/g(x)}

3. \infty-\infty

Contoh :

\displaystyle \lim_{x \rightarrow c} (f(x)-g(x))

yang mana \displaystyle \lim_{x \rightarrow c}f(x)= \infty dan \displaystyle \lim_{x \rightarrow c}g(x)= \infty

Sudut pandang lain :

\displaystyle \lim_{x \rightarrow c} (f(x)-g(x))=\lim_{x \rightarrow c} \frac{\/g(x)-1/f(x)}{1/(f(x)g(x))}

4. O^O

contoh :

\displaystyle \lim_{x \rightarrow c} f(x)^{g(x)}=

yang mana \displaystyle \lim_{x \rightarrow c} f(x)=0 dan \displaystyle \lim_{x \rightarrow c} f(x)=0

Sudut pandang lain :

\displaystyle \lim_{x \rightarrow c} f(x)^{g(x)}=exp \lim_{x \rightarrow c} \frac{g(x)}{1/ln f(x)}

About Riad Taufik Lazwardiclever

Lecturer of Mathematics at 1. Kalbis Institute | Managed by Binus (2018-now) 2. Telkom University (2017-2018) 3. UIN Bandung (2015-2018)

Follow Me

Leave a reply